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ABSTRACT: Tire results of exper iments  to de te rmine  some of the pa ram-  

emrs cha rac te r i z ing  the perforat ion of a barr ier  made  of a series of 
ma te r i a l s  are set forth.  These inc lude  the m o m e n t u m  impar ted  to the 

barrier  when it  is perforated, the d iameters  of the holes,  the angles  of 
front and rear dispersion, and a number  of others.  

I .  Let us consider the ease of de l ib ra te  perforat ion of a barrier  

of thickness t by a pa r t i c l e .  We shal l  introduce the coef f ic ien ts  

m,2 J1 el 
k - -  m 0 q  A~ ' i 3 -  J0 ' v = ~ -  (1.1) 

Here m2 is the mass pene t ra t ing  behind the barrier at  ve loc i ty  v2, 

m0 is the mass of the pa r t i c l e ,  AP is the mass lost by the barrier  when 

it  is perforated,  J~ is the m o m e n t u m  impar ted  to the barrier  due to 

perforat ion,  J0 and E0 are the i n i t i a l  m o m e n t u m  and the energy of the 

pa r t i c l e ,  61 is that  part of the energy  conver ted to hea t  and i r revers ib le  

vo lume strains behind she p las t ic  wave.  Thus, the coef f ic ien t  k deter-  
mines  tha t  part of the mass hav ing  the ve loc i ty  v z behind the barrier,  

the coef f ic ien t  t3 that  parr of the m o m e n t u m  rece ived  by the barr ier .  
The equat ions  for m o m e n t u m  and mass are wri t ten in  the form 

Jo (t -- ~) = rn=v, - -  maya, 

Jo = moVo, m o + A P  = rn~ + m~ . (1.2) 

Here v 0 is the v e l o c i t y  of the pa r t i c l e ,  ms is the mass de tached  _in 

she d i rec t ion  opposi te  to the d i rec t ion  of i m p a c t  with ve loc i ty  vs. If 

the process of perforat ion is de t e rmined  by the m e c h a n i s m  set forth 

previously  in [1, 2 ] ,  then  the equat ion  of conservat ion of mass up to 
c o m m e n c e m e n t  of forc ing out of the "plug" [1] is wri t ten in  the form 

lnO?)O 2 = (ml + 17~o) ?j]2 -~ 2gl, mo~, 0 = (m 1 + ml] ) Vl" (1 .8 )  

Here m i is the mass of the barr ier  pa r t i c ipa t ing  in  the i ne l a s t i c  i m -  

pact  (mr  > Ap) and mov ing  at  v e I o c i t y  v~ behind  the p las t ic  wave in 

the barr ier  up to the t i m e  i t  l e aves  the rear surface of the  barr ier .  From 
this 

~0 
v = l  m o + m  r (1.4) 

~, The powder system and the light-gas ballistic apparatus em- 

ployed in [3] were used to accelerate compact spherical particles. The 

impact velocity did not exceed 8.5 kg/sec. The barriers were made of 

Mark D-16T duralumin, Mark ST-8 steel, brass, cadium, tin, zinc, 

lead, Mark P-g00 polyethylene, porolon, sponge rubber, RK-9 rubber, 

polyethylene terephihalate (PETF), Mark ST glass-reinfomed textolite, 

polyisobutylene rubber, butyl rubber, and Mark SKB synthetic rubber. 
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The a c c e l e r a t e d  pa r t i c l e s  were m a d e  of the same  m e t a l s .  Steel  p a r d -  

c les  were used for i m p a c t  aga ins t  barriers m a d e  of po lymer  m a t e r i a l s .  

In a l l  cases ,  the spheres had a d i a m e t e r  d0 of 10 r a m .  
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Fig. 2 

Electronic chronometers of the "Neptun" type were used to measure 

the velocities v 0 and '12 ; they received electric signals from wire sen- 

sors, and the ve loc i t i e s  were de te rmined  on two bases for measurement  
[8 ] .  The quant i ty  Ap increased with growth in Z with v 0 = const and 

Pr = const (& is the densky of the barrier), and with growth in M with 

v0 = const and l = con=. The coefficients of the linear relationship 

v z = a(v 0 - b) are given in the table. It can be seen that the velocity 

v a dropped for a given v 0 with increasing I and Pt. 

As can be seen in the table, in a number of cases d o ~ I, thus one 

can consider with sufficient accuracy that the mass m z flies out dis z 

tributed with distance, but with a velocity vz close to constant. This 

is also substantiated by the experiments described in reference [2]. It 

was noted in the exper iments  that  there was a punched-out  part of the 

barrier  were dis tr ibuted in the rear dispersion cone.  
In order to de t e rmine  the coef f ic ien t  k from (1,1),  expe r imen t s  

were conducted in the fo l lowing  manner :  a s e m i - i n f i n i t e  barrier  m a d e  

of m a t e r i a l  with a known re la t ionship  of the r e a c t i v e  m o m e n t u m  coef-  
f i c i en t  g(v0) was ins ta l led  behind the thin barrier  of the m a t e r i a l  under 

study [8 ] .  The d is tance  be tween  barriers was chosen so tha t  the en t i re  

mass  m e was in te rcep ted  by a s e m i - i n f i n i t e  barrier  ins ta l led  on a 

ba l l i s t i c  pendu lum.  Then,  m z was de te rmined  from the equa t ion  

(vs) = JR  [(m,' + rn~) (rn2~'=~ - -  2Q)] - '/ ' ,  JR = Jn  - -  m2v~.(2.1) 

Here, JR is the r e a c t i v e  m o m e n t u m ,  ml '  is the mass e j ec t ed  from 

the cra ter  in the s e m i - i n f i n i t e  barrier ,  Jn is the e x p e r i m e n t a l l y  m e a -  

sured to ta l  m o m e n t u m  t ransmi t t ed  to the barr ier ,  and Q are the losses 

of energy  to l a t en t  heats  of phase t ransformation [1, 8 ] .  The value  of 

m z was de te rmined  in check  measurements  by weighing  the sheets of 
rubber (traps) p l aced  behind the barr ier  to be s tudied.  It fol lows from 

ca lcu la t ions  of k by the e x p e r i m e n t a l l y  obta ined mass m2 tha t  with 

through perforat ion,  there  is no back  sca t te r ing  up to v0 ~ 1 k i n / s e e  

(k = 1). Then,  k decreases ,  and fer ve loc i t i e s  v 0 ~ 3 to 4 k i n / s e e ,  i t  

tends toward 0.5 (ms ~ m r ) .  It should be noted that  no back  sca t te r ing  

was ever  noted  for po lye thy lene ,  porolon, or rubbers, inc lud ing  RK-9 
rubber.  

In the case of through perforat ion,  a part of the m o m e n t u m  of the 

pa r t i c l e  J1 was r ece ived  by the r e m a i n i n g  barr ier .  In order to de t e rmine  

J1, i t  was a t t ached  to a ba l l i s t i c  pendu lum so that  the pa r t i c l e  would 

f iy  on through without  h indrance  af ter  pene t ra t ing  i t ,  and the pendu inm 

f ixed she m o m e n t u m  J1. If there  were no back  scat ter ing,  then,  ac -  
cording to (1.2) ,  

J0 = rn2v2 + 3 1 .  (2.2) 

Expe r imen ta l l y ,  vs ~ 0.05 v0 [4] ,  which substant ia tes  (2 .2) .  Then, 

both g and mz can be de t e rmined  from these expe r imen t s .  The va lues  
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of k obta ined in this manner  agreed sat isfactor i ly  with previously  de -  
te rmined  values .  The re la t ionship  ~(v0) also decreasing with growth in 
v 0 tended toward values much  tess than one.  Thus, henceforth we can 

neg tec t  t.~e value  of 8 for h igh  ve loc i t i e s  v 0 . 
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In order to de te rmine  the coef f ic ien t  z, by (1.4),  sections of the 

holes in the barriers were m a d e  and the mass involved in i r revers ible  

strains was found by weighing .  The sum of this  mass and Ap y ie lded  

the value of mr .  It is in teres t ing  to compute  the coef f ic ien t  ut de-  
f in ing the part of the energy E0 dissocia ted into heat  in the front of the 

shock wave .  The va lue  of ut is ca l cu la t ed  by the known equat ion  of 

state of the ma te r i a l s  in the pa r t i c l e  and the barrier ,  t ak ing  the cubic  
a t tenua t ion  of pressure at  the front of the shock wave into a considera-  

t ion [1 ] .  Sections of the holes and craters  were constructed on a large  

sca le  for the conducted expe r imen t s  for g raph ica l  representa t ion of the 

pressure drop at  the front of the shock wave in the pa r t i c le  and the 

barrier .  The drops T(x) (where  T is the t empera tu re  at  the front of the 

shock wave) corresponding to the pressure drop at  the front p(x) (x is 

the coordinate)  m a d e  i t  possib!e to compute  the share  of the t he rma l  

component  of in te rna l  energy and,  consequent ly ,  yr. 
The data  on u, ul, and I] for Fe and D16T are p lot ted  in Fig.  1. 

The fo l lowing notat ion is used the re  v(uQ): 1) Fe --~ D16T, I = 1.0 em;  

2) F e ~ D 1 6 T ,  l = 0 . 5 c m ; 3 )  F e - " F e ,  l = 0.5 cm,  8(t,0);4) Fe 

-~ D16T, l = 0.5 em;  5) Fe -"  D16T, l = 1.0 era .  In this  case,  the 

dashed l ines  show the re la t ionship  ut(v0). It can be seen tha t  u, in -  
creases with growth of the densi ty and the thickness of the barrier ,  8 
with growth of the thickness of the barrier with v 0 - co'nst. The in-  

crease in u and u t with the thickness  of the barrier can  be exp la ined  

q u a l i t a t i v e l y  by the greater  amount  of heated mass.  Averaging the 

va lues  of y due to  scat ter  of the data  is exp la ined  by inaccurac ies  

the e x p e r i m e n t a l  de t e rmina t ion  of mr.  The share of the energy E0 

t ransmi t ted  to the barrier  was also de te rmined  e x p e r i m e n t a l l y  by a 

ca lo r ime t r i c  method  for s e m i - i n f i n i t e  targets  of Fe, A1, Cd, Sn, and 

Pb. Its rat io to E 0 drops with increased v0, which can  be exp la ined  

q u a l i t a t i v e l y  by the increase  in energy carr ied off by the mass m a 

e j ec t ed  from the cra ter .  The problem of the d i a m e t e r  of the e j ec t ed  

part  of the barrier  ( "p lug")  is impor tan t .  Exper iments  invo lv ing  through 

perforat ion showed that  the hole  in the barr ier  most often has the shape 

of a hyperboloid  of revolut ion of one sheet ,  and a part of the m a t e r i a l  

is some t imes  car r ied  off in face  and rear f ragments .  One can  assume 
that  the "plug" has a cy l i nd r i ca l  shape and is e j ec t ed  before the to ta l  

hole  is formed.  The shape of the hole  (hyperboloid  of revolution) is 

probably formed from the in te rac t ion  of the sect ions of the hemisphe r -  

i c a l  shock wave  re f l ec ted  from the rear surface and those s t i l l  a r r iv ing .  
Thus, i t  is necessary to take the d i a m e t e r  of the "ping" as the mini-. 

m u m  d i a m e t e r  Of the hole  d..  
3.  It is of interest  to d e t e r m i n e  the dependence  of the angles  of 

rear (~o) and face  (c0 dispersion during perforat ion on various factors .  

For this purpose, sheets of Whatman paper were placed in front of and 
behind the target  in order to fix the f ield of f l ight  of smal l  f ragments .  

The results are presented in Fig. 2. The fol lowing notat ion is used: 1) 

Fe-'-" O161", Z = 1.o c m ; 2 )  Fe ~ D16T, l = v.5 c m ; 3 )  Fe--+Fe,  I = 

= v.b cm;  4) Cd ~ Cd; 5) Fe ~ Cd; 6) Sn ~ Sn; 7) Fe ~ Pb; 8) Pb 
--" Pb; 9) Zn ~ Zn; 10) Fe ~ Zn; 11) Fe --" sponge rubber; 12) Fe 

NETF; 13) Fe o . S T .  

As a result of these exper iments ,  one can draw the fol lowing con- 

clusions in regard to angles ~ and c~: 1) no dependence of angles g and 

c* on I could be found as  the data for different l lay wel l  on the re la -  

tionship ~ v 0 )  and ~(v0) for one pair ;  2) q and c* did not depend on the 
density of the par t ic le  P0 ( ag reemen t  of the relat ionships ~ and ~)u, 

c~7 and c~8, a4 and a~, and others); 3) when l = const, the angles 

and c~ increased with increas ing density of the  barrier Pl; 4) ,P increases 
s l ight ly  with increas ing v0 ; 5) the re la t innship  ~ v u )  has a c l ea r ly  

marked  m a x i m u m  at v 0 ~ 1.u k m / s e c  which is fol lowed by a sl ight 
decrease;  6) the value  ~0 ~ 20 ~ to 25", c~ ~ 60 ~ to 120 ~ The re la t ion-  

ship 7 by (v0) has a value of about 60 ~ when v 0 ~ 8.1 k m / s e c  is not 

shown in Fig. 2. The exper iments  showed that  the face f ragments  

(angle  c0 were distr ibuted in a narrow zone at the side surface of the 
c i rcular  dispersion cone and the rear f ragments  covered the dispersion 

f ie ld  a lmost  even ly ,  it can  be assumed that  the annular  dispersion of 
the face f ragements  is due to the introduced par t ic le  and the decrease  

in re la t ionship  ~ v o )  fol lowing the m a x i m u m  begins after the par t ic le  

is broken into f ragments .  
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Figure 3 shows the re la t ionships  d , (v0)/d 0 for me ta l s .  The nota t ion  

corresponds to the notat ion of Fig.  2 with the fol lowing except ions :  10) 
Fe -~ brass, l = 0.2 cm;  11) Fe "-~ 6061-T6,  l = 0475 c m .  The re la -  

t ionship 11 is t aken  from [5] for a s teel  sphere d 0 = 0.63 cm and Mark 
6061-T6 dura lumin .  It can be seen that  the relat ionsMp 2 obta ined in 

this  work joins sa t i s fac tor i ly  with re la t ionship  11 at higher  impac t  ve-  

loc i t i e s  v 0. Figure 4 shows the e x p e r i m e n t a l  data for d , (vo) /d  0 for 

po lymer  ma te r i a l s .  The fol lowing notat ion is employed :  1) Fe -~ poly-  

e thy lene ,  Z=  1.0 em;  2) Fe "-~ FETF, l = 0 .Scm;  3)Fe  ~ po lye thy lene ,  

l = 0.1 cm; 4) Fe --~ PETF, l = 0.2 cm; 5) Fe ~ PETF, l = 12 �9 1 0  `4 

c m ; 6 )  F e ~ s p o n g e r u b b e r ,  l = 5 . 0 c m ; 7 )  F e ~ R k - 9 r u b b e r ,  l = 

= 2.5 cm.  in some cases (for e x a m p l e ,  butyl  tubber and polyisobutyl -  

erie) the hole  was observed to be c o m p l e t e l y  f i l l ed  in [9] .  On the 
basis of the relat ionships of Figs.  8 and 4, one can  conclude  tha t  the 

ra t io  d , /d  0 with v 0 = const increases  in the case of me ta l s  with in-  

creased densi ty of the barrier  Pl, thickness of the barr ier  l ,  and par-  

t i d e  densi ty  P0 (for the g iven range of ve loc i t i e s ) .  At the sam e t i m e ,  

we observe an inverse pat tern  in the polymers :  d, decreases  with in-  

creas ing l even  though the d i a m e t e r  of the perforat ion increases  on 

the l e v e l  of the i n i t i a l  and rear surfaces.  One may  assume that  when 

l increases ,  the t i m e  for forming the hole increases  and,  consequent ly ,  
the t i m e  for m a i n t a i n i n g  some t empera tu re  of l oca i  hea t ing  in the 

annular  zone  about t h e h o l e ,  which is essent ia l  to the  process of f i l l ing  
in holes in  polymers .  As a consequence  of this, the  in te rna l  d iametex  

Fe "-~ D16T 
Fe ~ D16T 
Fe -"  Fe 
Fe -~ brass 
Cd ---" c d  
Sn "--~ Sn 
Zn ~ Zn 
Fe(F.b) ~ Pb 
Fe po lye thy lene  

, c m  

0.5 
l .O 
0.5 
0.2 
i . i 5  
2 .0  
t .49  
0.97 
0.99 

a 

l 
0.89 
0.666 
0.9 
0.652 
O. 267 
0.555 
0.55 

1 

bw 
k m / s e e  

.0. i 4  
0 . t 8  
0 . t8  
0 . i 4  
0.67 
0.3 
0.85 
0.2 
0.05 

Fe ~ po lye thy lene  
Fe ~ porolon 
Fe ~ sponge rubber 
Fe -'-" RK-9 rubber 
Fe ~ PETF 
Fe PETF 
Fe --" glass re inforced t ex to l i t e  
Fe ~ poly isoburylene  
Fe butyl  rubber 

Z,  c m  

O.i 
3.85 
4.5 
2.03 
0.2 

i2.tO-~ 
0.5 
3.6 
4.42 

b j  a 
k m / s e c  

l o.oa 
1 0.03 
1 0.  i 5  
.82 0.05 

0.03 

i 0.03 .9 0.05 
0.2 

0.781 0 
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d. decreases, even though the outer diameter of the perforation in- 

creases with growth in l. We also note that when l = const with 

increasing do, this Z = l i ( f o r  the accepted v0) a n d d . = m a x d , ( l i  

is the maximum depth of penetration). For larger v 0 with the same 
d o = const, this is Z < l 1 and d, < max d*. Thus, the relationship 
d*(%)/d 0 may be convex upwards, which is substantiated by experi- 
mental  data (Fig. 3). 
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